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Abstract

Introduction: Fluids and vasopressors represent the cor-
nerstone for hemodynamic instability management in the
intensive care unit (ICU). However, optimal personalized
treatments strategies are still missing. Goal: To evaluate
the ability of a reduced set of cardiovascular features in
determining optimal actions with a reinforcement learn-
ing approach. Methods: Data were extracted from the
MIMIC-III database Patients’ trajectories were modeled
as a Markov decision process with a target reward based
on 90-day mortality. Performances with a reduced set of
cardiovascular features (CARDIO), including heart rate,
systolic and diastolic blood pressure, shock index, and
oxygen saturation were compared with a random policy
model (RANDOM) and a model with a full set of 48 clinical
variables including physiologic, laboratory measurement,
and ventilation parameters (FULL). Results: The CAR-
DIO model achieved the highest results with a 95% lower
bound (LB) of estimated policy value equal to 96.17 com-
pared with the 86.00 obtained from the FULL model and
82.62 from the RANDOM policy model. Conclusions: Re-
sults show that cardiovascular features and ongoing treat-
ments have the potential to determine the optimal dosage
of fluids and vasopressors for septic patients when using
reinforcement learning tools for the development of medi-
cal decision support systems.

1. Introduction

Sepsis is an important global health problem and it is
the among the most common causes of in-hospital deaths
with an approximate cost of more than $24 billion annually
in the United States, an incidence of about 48.9 million
of cases in 2017, and with an average mortality of 19.7%
[1]. Sepsis is defined as a dysregulated host response to
infection and its final stage, the septic shock, is considered
one of the major problems in intensive care units (ICU)
with a reported mortality of about 40% [2, 3].
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Timely administration of crystalloids and vasopressors
are the most important interventions to deal with sepsis-
induced hemodynamic instability like patients’ hypothen-
sion and tissue hypoperfusion [4]. However, clinical
guidelines provide only indications of the best general
strategy while criteria for determining the optimal person-
alized strategies are still largely debated [5, 6].

In this context, the application of reinforcement learn-
ing (RL), the branch of machine learning which aims at
developing models able to determine the optimal decision
given a specific objective function, gained increasing in-
terest especially in the ICU context [7]. RL applications
were already developed in literature for: tracking the op-
timal glycemic level [8], optimizing weaning time from
mechanical ventilation [9], and continuous optimization of
morphine dosage [10].

Recently Komorowski et al. published an inspirational
study, addressing the lack of personalized strategies for
fluid and vasopressor dosage [12], where the authors pro-
posed a RL model to determine the optimal treatment strat-
egy for septic patients admitted to the ICU. The proposed
policy, referred to as ’AI policy’, determined the optimal
dosages of fluids and vasopressors in order to minimize
90-day patients’ mortality.

The goal of this study is to assess the ability of a minimal
set of easily measurable cardiovascular variables with in-
formation about ongoing treatments in being used as main
drivers for estimating optimal treatment strategies with a
reinforcement learning approach.

2. Methods

2.1. Cohort Selection, Data Extraction and
Preprocessing

Data used for this study were extracted from the
MIMIC-III [13], an open-access database publicly avail-
able on PhysioNet [14] and containing data from 61,532
admissions in the intensive care units of the Beth Is-
rael Deaconess Medical Center between 2001 and 2012.
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We first started by reproducing Komorowski’s results and
therefore followed their inclusion criteria for selecting the
data. Briefly, we considered adult patients with sepsis,
which was defined according to the third definition of sep-
sis [15] as the increase in sequential organ failure assess-
ment (SOFA) score ≥ 2 and the contemporaneous pre-
scription of antibiotics and sampling of bodily fluids for
microbiological culture thus reflecting the required criteria
which consists in the presence of organ failure and suspi-
cion of infection.

We excluded subjects less than 18 years old, without re-
ported mortality or intravenous fluid intake, and patients
with stopped vasopressor treatments that would have died
in the next 24 hours because for this patients the reason to
stop treatments was mainly due to a so high illness severity
that any high dosage treatment was considered futile.

The resulting 20,496 ICU admissions with also a sepsis
onset estimate were included in our study. We collected 48
variables with 4-hour time steps from 24 hours prior the
onset up to 48 hours after the estimated onset time. Con-
sidered variables included demographics (e.g. age, gender,
weight, Elixhauser comorbidity index) physiologic vari-
ables (e.g. heart rate and systolic blood pressure), labo-
ratory measures (e.g. pH, lactate and white blood cells
count), ventilation parameters (e.g mechanical ventilation
and FiO2) and medications (e.g. fluids and vasopressors)

2.2. Reinforcement Learning Model De-
scription

Reinforcement learning, a sub-field of artificial intelli-
gence (AI), consists in a computational agent that learns
a set of rules for taking decisions, referred to as ’policy’,
that in turn would maximize a specific reward function.
The agent learns optimal treatment by trial-and-error pro-
cedures performed on a subset of observations drawn from
an environment that given specific information about its
current state generates a return depending the action per-
formed by the agent. Therefore, differently from super-
vised and unsupervised learning approaches, which try to
learn or find out the rules that link a specific set of observa-
tions obtained by an expert with the outcomes of interest,
RL learns the optimal actions that maximize a reward sig-
nal obtained by interacting with the environment [16].

A Markov decision process (MDP) was used to model
the patient environment and trajectories and policy itera-
tion was used to solve it and to estimate actions maximiz-
ing the expected 90-day patients’ survival. Each MDP pro-
cess is characterized by:
• A finite set of states (S).
• A finite set of actions (A) for a given state s ∈ S.
• The probability of moving from a state s at time t to a
new state s′ at t+ 1 given the action a ∈ A, (T (s′, s, a))
• The reward obtained when moving to s′, (R(s′))

• The discount factor (γ), which goes from 0 to 1 and de-
termines the importance of future rewards.

S was set to 750 distinct states determined by k-
means++ clustering on the set of available measures plus
two absorbing terminal states, i.e. death and survival. A
included a discrete set of 25 possible actions as the com-
bination of 5 distinct fluids and vasopressors dosages. R
for each trajectory was set to +100 in case of a positive
terminal state (survival) and -100 in case of negative state
(death). Finally, (γ) was set to 0.99, indicating that a late
death will have similar importance of an early death.

The state-action value function, Qπ , represents the ex-
pected sum of discounted rewards of a specific action taken
in a specific state and following policy π for each MDP as
follows.

Qπ(s, a)← Qπ(s, a) + α(r + γQπ(s′, a′)−Qπ(s, a))
(1)

where α is the learning rate and r the immediate reward.
Therefore, Qπ quantifies the result of the chosen treatment
strategy on patients’ mortality.

The AI’s policy corresponding to maximum state-action
value π(s)∗ was estimated using in-place policy iteration,
so maximizing the long-term sum of rewards representing
expected patients’ survival. The estimation criteria can be
formulated as follows:

π(s)∗ ← argmax
a

Qπ∗
(s, a)∀s (2)

The state-value estimated for state s following the policy π
thereafter, V π(s), can computed according to the Bellman
equation follows:

V π(s) =
∑
a

π(s, a)
∑
s′

T (s′, s, a)[R(s′) + γV π(s′)]

(3)
Finally, in order to evaluate the estimated optimal AI

policy on the existent observations which follow clin-
icians’ policy we used the off-policy evaluation with
weighted importance sampling (WIS) as proposed by Ko-
morowski et al., considering the clinicians’ policy as the
behavior policy πC , and the AI policy as evaluation pol-
icy πAI . The cumulative importance ratio up to step t was
defined as ρ1:t :=

∏t
t′=1 πAI(at′ |st′)/πC(at′ |st′), and its

average at horizon t as wt =
∑N

i=1 ρ1:t(i)/N , with N as
the number of trajectories. The trajectory-wise WIS esti-
mator, VWIS = ρ1:T

wT

∑T
t=1 γ

t−1rt, is then averaged for all
trajectories in order to derive the overall WIS estimator as:

WIS =
1

N

N∑
i=1

V
(i)
WIS (4)
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Figure 1. Estimated 95% lower bound of the 250 AI poli-
cies by using the whole feature set (orange dotted line), the
subsets of cardiovascular variables and the random policy.

2.3. Reduction of the Feature Space

In this study we compare the performance obtained by
reducing the feature space on features because including
such large set of features might be computationally expen-
sive, we explored the performances of the model when se-
lecting a subspace of the features according to the follow-
ing variants:
• CARDIO Model: reduction of the feature space by keep-
ing only 6 cardiovascular variables: heart rate, systolic
blood pressure, dyastolic blood pressure, shock index,
SpO2 and mechanical ventilation.
• RAND Model: Policy that takes action randomly.
• FULL Model: Model reproduced by Komorowski et al.
[12] using 48 features.

We computed the WIS estimator obtained on 250 differ-
ent models obtained by training the clustering algorithm
with a randomly selected 80% of the data (train set) and
testing with the remaining 20% of data. The 95% lower
bounds (LB) of 2000 bootstrapped resamplings of the WIS
estimators between the different AI models were compared
in Figure 1. The distributions of the mean bootstrapped
WIS estimators obtained averaging the 2000 resamplings
for each of the 250 trials are compared in Figure 2.

3. Results

The evolution of the best 95% LB of the models over the
250 trained models can be seen in Figure 1.

Figure 2. Boxplots of obtained mean policy values for the
evaluated models over the 250 trials.

The CARDIO model performance is the solid orange line.
After 3 models built the CARDIO model achieves the high-
est policy value 95% LB with 86.5286. The 95% LB of the
model further increases and settles at the 95% LB value of
96.1722 at model number 156.

The FULL model performance is represented by the
dashed blue line. The FULL model performance obtain
its first positive 95% LB at trial 4 with 72.4545 and keeps
increasing while training additional models, stabilizing at
the value of 86.0051 at model number 23.

The RANDOM policy performance is represented by the
yellow dotted line and it is used as baseline model. At
model number 8 the random policy achieves its first pos-
itive 95% LB with the value of 76.875 and it also rapidly
increases while training additional models, stopping at the
value of 82.6169 at model number 94. 95% LB metrics
obtained on the random policy show that all RL policies
obtained higher results. Between the two AI policies the
CARDIO model is the best performing according to the
95% LB. In figure 2 the boxplots of mean policy values
obtained over the 250 trials are shown for all model fami-
lies.

The median of the CARDIO model is the best one with a
value of 59.4721, the FULL model follows with a median
value of 52.422. The random policy median has the lowest
value with a median of -16.122. The CARDIO model also
shows the highest first and third quartiles equal to -18.3422
and 84.5178, the FULL model resulted in good first and
third quartiles (-41.9404 and 80.6584) whereas the random
policy showed the lowest values of -54.2741 and 48.8.
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4. Discussions

The goal of this study is to compare the performance
of a RL model, in estimating optimal treatments for septic
patients admitted in ICU, by comparing the ability of a re-
duced set of physiologic features mainly related to the car-
diovascular system with the results obtained by a random
policy model and by Komorowski et al. who firstly showed
the potential of this approach in the ICU. Despite we thor-
oughly followed the published methods, we observed a dif-
ference in the number of extracted ICU admissions with
respect to the original study. However, general population
statistics agree with those presented by Komorowski and
expected for a population of septic patients, and the ob-
tained results with the full set of features were similar to
those obtained by the authors. The higher results obtained
with the reduced set of cardiovascular features improves
model performance as already observed in previous anal-
yses [17] and highlights the importance of cardiovascular
features in determining the optimal fluid and vasopressor
treatment strategies. Moreover, the proposed features can
be easily and continuously recorded at the patients’ bed-
side, thus giving the possibility to continuously optimize
the treatment strategy.

5. Conclusions

In conclusion, our study shows that reinforcement learn-
ing models can benefit form a reduction of the feature
space, and that physiologic variables related to the car-
diovascular system, and easily measurable at the patients’
bedside, contain key information for determining the op-
timal treatment strategy in terms of fluid and vasopressors
administrations, thus giving the possibility to continuously
monitor and optimize patients’ treatments in the ICU.
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